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I SUHHARY

The use of high altitude balloons as stable platforms for
meteorological and astronomical observatories necessitates ai investiga-
tion ot the dynamic benavior oi balloons. This report deals with tne
azimuthal rotations of the balloon-gondola system, The aerodynamic
damping and inertia of the system have been matriematically formulatea
and experimentaily verified. The forcing to~quie, mostly aerodynamic in
natuire, has been described and its order of magnitude has ocen estcmated
fcr k'nown balloon rotations.ý

These rotations have Deen alleviated in the past by contrrc
systems which orient the gondola by reaction torques applied to tne
balloon, The aerodynamic param~eters which are evaluated in trlis report
can bj useful in the design of such a control system.



II. INTRODUCTION

We believe thal the principal source of the azimuthal motion
are torques generated in the wake of the balloon, as nouted in our
Report No. 1 of this contract (Ref. 1). As the balloon moves through
the atmosphere, the flow of air past the balloon separates, formiog a
cylindr.cal vortex sheet in the wake. The qheet is hignly unstabie and
curls uron itself, thus, creating a region of highly concentraLed vor-
ticity. Eventually, this region breaks awey from the sheet, and the
process is repeated. The overall result is a periodic shedding of vor-
tices in the wake. Aerodynrtmic torques, due to these vortices, can
induce the balloon to exhibit many moics of motion. The azimuthal or
rotational mode is of inter^-: here. In order Lo predict the nature of
these torques in ':uantitative tirms, one must make a thorough survey of
the highly complex wake.

In this report, we present a qualitative description of the
wake behind a bluff body (like a sphere). Our remarks are drawn from
our own experiments as well as the experiments of others.

The torque may be estimated if the motion and the dynamic
parameters (inertia, damping, spring ronstant) of the system are known.
In addition to the fabric and hardware inertia, the boundary layers con-
tribute appreciably to the icarLia of the system. The gases on either
side of the balloon exert retarding torques on the balloon, the effect
being that of a damping aerodynamic torque and an apparent additional
moment of inertia. Lxperimental values of the damping aerodynamic
torque on a sphere rotating with constant velocity were presented in
Tachnical Report No. I (Ref, 1). Since then, we have made finer and
more complete measuremevt•, and the final results are presented in this
report, AlRo, the experimenral verification of the formula of the ap-

parent additional moment 3f inertia is presented here.

With these aerodynamic parameters specified, a dynamic analysis
with numerical examples is made of the coupled rotations of the full
scale balloon-gondola system, The magnitude of the forcing to;, ue is
estimated Zor known rotations.
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III. THE WAKE CF A M4OVING B',UVF BODY

The flow of a viscous fluid around i bluff body can be de-
scribed briefly in the following manner. Visiosity demands that the
fluid touching the surface of the body be stadionary dith rexpect to the
body (no-slip boundary condition). A small distance oway from the sur-
face, the flow is essentially potential (invifcid). In other words, a
thin boundary layer covers the body, through w;nich the velocity of the
fluid changes v•ry rapidly from zero at the sairface to the value of the
potential flow. The thickness of the boundary layer decreases with in-
creasing Reynolds number (Re, Hrnce, for large values of Re, the
boundary layer is thin.

The strong viscoug forces in and sl:mg the boundary layer are
balanced by the pressure graliestt in the same direction of the potential
flow outside the layer. At some point behind the front of the body,
this pressure gradient may not be able to cancel Lhe viscous forces of
the boundary layer. There, the ioundary laye. detaches from the body.
There is, now, a surface stactini; from the boc'y and extending behind it
in the fluid, on which the vilocity of the fltid is equal to zero. In
the two regiorts separated by this surface, th. flow is in opposite di-
rections; i.e., we have sepa-ation of the fl&o. The velocity gradients
normal to this surface are viry high. Therefcra, this surface is like
avortex sheet and, being inherently unstable curls upon itself cre-
stinj a region of highly conrentrated voecticity; i.e., a bound vortex.
The vortex is fed from the varticity g$nerated at the surface of the
body and, if the rate of generation of vorticýty is greater than the
rate of its diffusion througli the fluid, the vortex grows in strength
continuously. Ultimately, tiis bound vortex ccapeas and travels in the
wake, and the cycle is repea:ed. The overall result is an occasional
(often periodic) shedding of vortices in the :ae. In suamary, the
shedding of vortices in the 4ake is due to thc iepar;;tion of the flow
and the instability of the r~sulting v~rtex shut aud bound vortices.

These phenomena ha'e been observed experimentally. For a cyl-
inder, the shed vortices are line vortices with their axis parallel to
the axis of the cylinder. Tisey are shed in tt-o trails. Since vortex
lines must be closed (like e'ectric current flnes), the vortlcity of one
vortex in one trail is equal and opposite to thc vorticity of one vortex
In the other trail, The two vortices meet at te region of the wake
corresponding to the edges ol the cylinder, ttj, forming a elo'ed vor-
ticity circuit. In the idea' cess, the two trs'ls are parallel and
neriodic constituting the so-call-d "Kirman vcrtex street". These vor-
tices exert forces on the cy.inder, which can cause lateral motions of
the cylinder as well as a ro-ation about its us. Since the vort.city
in one trail is equal and opýýosite to the vorticity In the other t:ei1,
'Lo• e fcrces are alternating and the resultinl "rotions oscillatory, the
frequency of the oscillation is equal to the ir:quency of the shedding
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of vortices in the wake. A curve has been obtained experimentally, and
relates the dependence of the Strouhal number, St (a dimensionless
parameter proportional to the frequency), on Re (see Fig., 149 of Ref. 2).
Indeed, ic has been shown that the frequency, in which long wires "sing"
under the influence of the wind, can be predicted from this curve.

This curve shows that St increases with Re for 100 < Re < 700,
St is essentially constant for 700 <Re < 105, and St increases very
rapidly with Re for 105 < Re < 106. Hence, the wake has a rather well-
defined periodicity in the middle range of Re. In the last range of Re,
small distrubances of the ambient flow will change the wake radicellye
the periodicity of the wak4 ' -ost, and the wake is very confused and
turbulent.

The wake of a bluff body with a spherical shape will have the
same basic features as that of a cylinder with some differences in detail
due to tkx differences in geometry. Unfortunately, the wake of a sphere
has not been studied to the same extent as the wake of a cylinder. Some
revealing experimental studies have been pubalished only recently. At
the present time, it appears that there in an adequate knowledge of the
wake of a sphere for Re up to about 1,000 only.

Magarvey, et Ll., (Refs. 3, 4 and 5) have taken some excellent
photographs of the wake of a colored liquid drop fo'ling freely in water.
Initially, the drop was accelerating, but it reached a constant velocity
ultimately. Figure t shows the formation of the wake. As the drcp was
accelerating, the flov began to separate and a cylindrical vortex sheet
appeared (a). This sheet, being inherently unstable, curled upon itself
more and more (b and c) torming a bound vortex ring. As the vorticity
of the vurtex ring increased, it began to break off from the drop. This
is shown in photograph (d) taken 0.01 second before the first vortex
ring was discharged in the wake. Note that the ring is discharged at a
distance behind the drop of the order of magnitude of the diameter of
the drop. Figure 2 shows the wake of a drop falling with constant ve-
locity corresponding to Re = 360 ((b) is 10 seconis later than (a) and
shows the diffusion of the vortex elements), The vortex elemntcs are
distorted rings interconnected with line vortices. There is a definite
periodicity and a separation of the vortices in two traiLs. The vortic-
ity of the rings in both trails is in the same direction.,

Hagarvey obtained an experimental curve for the dependence of
St on Re for 270< Re < 390. As Re was increased further, the wake oe-
gan to lose its periodicity. This is shown in Figure 3 iu, Q- 1040

Figure 4 shows representative results from our own rough ex-
periments. A ping-pong ball was placed in a uniform stream, wh % speed
was varied so that values of Re up to 6,000 were obtained. Ink. fVwing
out from small h'les on the equator of the ball, made the wakc ,, ..ole.
At Re - 600 (Fig. 4a), the wake was similar to chat obtained by Magarvey,

Iar-hu, 3.lim,.hc.
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FIGURE 1 FORMATION AND SHEDDING OF VORTEX RINGS IN THE \)AKE
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(a) (b)

FIGURE 2 THE WAKE OF A LIQUID DROP OF REYNOLDS NUMBER 360.
(COURTESY OF "THE PHYSICS OF FLLITU.JS")
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FIGURE 3 THE WAKE OF A LIQUID DROP OF REYNOLDS NUMMER I!n4f
(COURTESY OF "CANADIAN JOURNAL OF PHYSICS")

7

,rmm~lI



D4

I-w- or

46.



and it had a dafinite periodicity. At Re = 1200 IFig. 4b), some peri-
odicity was still visible. At Re = 2400 (Fig. 4c), the wake was quite
confused with some regions of concentrated vorticity, At Re = 4800
(Fig. 4d), the wake was almost uniformly turbulent and all perJodicity
disappeared.

This apparent disorder in the wake of a sphere at values of
Re above 1,000 must be due to the presence of a high dcgree o: ambient
turbulence, or a very sensitive dependence of St on Re, or both. Accu-
rate and well-controlled experiments will clear up this point, At the
present time one thing is rather clear; i.e., for Re in tne range of
about one to a few thousands, the wake of the sphere is incipiently un-
stable, and very small distuLgwnces of the uniform stream (like inherent
turbulence, small ambient flow disturbances, etc.) can alter the form
of the wake and destroy its periodicity. Tnis has been confirmed by
other investigators (verbal communications),

As in the case of the cylinder, the wake of the sphere exerts
forces aol torques on the sphere. Therefore, )f the sphere is free, it
can assune quite a few modes of lateral motion and rotation. The same
phenomena will occur for a body like a balloon. These facts have been
confirmed by our experiments with balls and scaled balloons falling
freely in a water tank (Ref. 1).

9
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IV. DAMPING AERODYNAMIC TORQUE FOR A ROTATING SPHERE

Since the azimuthal rotation of balloons is especially crucial
while they are at or near their floating altitude, we have restricted
our atteation to the case of fully inflated balloons. A balloon at
floating altitude is dealized as a spherical shell with an extremely
bmall thickness to r.idius ratio. The spherical shape is believed to be
close enough to the Lnion-shape of actual balloons to make the results
applicable, while preserving geometric simplicity for ease of analysis.
It Is further assumed that damping is independent of the small values of
Ve:tical velocity.

A simple experiment (Ref. i, p. 36) was previously described
for obtaining tre torque required to overcome viscous skin friction on
"a steadily rotating sphere. The goal of this experiment was to provide
"a basis for estimating the damping aerodynamic torque which opposes the
rotations of rising and falling balloons.

The results of the first experiment were sufficiently encour-
aging to warrant refining the experiment. While no better means of
measuring small steady torques was found, more precise measurements have
been carried out on a greater number of models which were more highly
spherical. The data extend over a wider range of variables and are more
reliable than the previous data.

A. EXPERIMENTAL SET-UP

A stainless steel cylindrical tank--3 feet in diameter.
2.5 feet deep--was filled with water. Brookfield viscometers (Model RVF)
were used to spin the models at constant speed about a vertical axis and
to indicate the torque required to maintain the steady rotation• One
vLscometer had operating speeds of 100, 50, 20, and 10 rpm; the other,
20, 10, 4, and 2 rpm. Each in turn was carefully mounted with its shaft
at the center of the tank. The models were completely filled with water
and submerged so that the "north pole" was about 3 inches beneath tae
free surface.

Eccentricity was minimized by very careful mounting, Still a
small AC disturbance, due to eccentricity, appeared in some viscometer
readings. The average readings over a cycle should not he Pffected by
it.

Sufficient time was allowed after starting the aynchronous
motor in the viscomater for the starting transients to damp o;.- (see
further discussion below).

ih
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B. SPHERICAL MODELS

The models were spherical aluminum floats (Fig. 5). Each
float consisted of two hemispheres, of about 0.025 inch wall thickness,
welded together at the equator. The welded seams were filed down flush,
and each sphere was sprayed with clear lacquer.

The nominal diameters were 2, 3, 4, 5, 6, 7, and 8 inches, but
the two largest spheres could not be uned. They put enough weight on
the viscometer bearing to increase bearing drag prohibitively. The ac-
tual equatorial diameters as measured and the mass parameters (for
future reference) are tabulated in Table I. Generally, the equatorial
and polar diameters agreed w' "a about 1/64 inch, but the polar diameter
of Sphere Number 5 was about 3/64 inch leos than its average equatorial
diameter.

TABLE I

DIA•ETERS AND N&SS PARAMETERS OF SeHERICAL FLOATS*

Moment of Inertia
Sphere No. Diameter (CM) Mass (GM) (GMCM2)**

1 5.02 19.5 81.9

2 7.58 61.3 646

3 10.12 128.0 2,190

4 12.66 197.6 5,290

5 15.16 186.5 7,170

6 17.66 399.7 20 800

7 20.20 478.1 32,500

*Obtained from the Chicago Float Work!,A 2330 South Western Av^'i.ue,

Chicago 8, Illinois.

**Computed from Moment of Inertia = 1/6 (Maas)(Diameter) 2 .

I •,~~~~~thur 13itr Jt'
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C. EXPECTED FORM OF THE DAMPING TORQUE

In Technical Report No. 1 (Ref., I) the form of the aerodynamic
damping torque on a rotating sphere was deduced from theoretical consid-
erations of the boundary layer uea&: a flat plate moving with constant
velocity. Here, the form -2 the torque will be derived from the flow of
a rotating disk, which has many similarities with the flow o: r rotating

sphere and has been completely solved..

Figure 6 shows the streamlines of tbp flow in a meridional
plane of an infinite disk and a sphere of radius a, both rotating with a
constant angular velocity Wu. axcept in the neighborhood of the equator,
the flow of the sphere is quite similar to the flow of the disk. Through-
out the disk the boundary layer thickness is constant. For the sphere,
the two boundary layers, which start. from the poles, grow towards the

equator, where they collide and erupt. (Nor is the flow of the rotating
sphere near tVe equator like the flow of a rotating cylinder, since in
the latter Lhere Is no secondary outflow at all..

For the disk, the angular velocity of the fluid decreases to
about 0.03w in a distance S away from the disk, which is given by (see
Ref, 2, Seccion 43):

S=4.5 z

where p. and p are the viscosity and density of the fluid, respectively.
Taking 6 as the b"undary layer thickness for the sphere and using the
local velocity v = wasing, we find that the shearing stress (W• v/8)
acting on the sphere at 0 is approximately !qual to 0.222 #p )IYew

asing. Then the damping torque, D, whLch is equal to the sumation over
the sphere of the product of the shearing stress 5v the area by the dis-
tant- frr.; .h, Axis, is approximately given by.,

D TI7f [0.222 (p/) 1 / 2 t,03/2 a sin g (2 rra 2 sin 9 d),(m sin 9).

0

Therefore,

D Ir 1.9 (p/1) /2(3a" a". (2)

LeL us define the pertinent Reynold's number, R, by.

2
*g!=taý k3)
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(a) (b)

FIGURE 6 STREAMLINES IN A MERIDIONAL PLANE OF (a) I -. ,oTAT DiSK AND (b)
ROTATING SPHERE
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and a dimensionless drag coefficient, CD, by,

D = & w2 a4 CD (4)

Then Equation 2 can be put in the formf

CD L 1.9 R_1/2 (5)

The form of Equations 2 and 5 will be the guide in correlating
the experimental results.

D. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental data are tabulated in Table 1I. Each datum
point tabulated io the average of at least three tests. The repeatibil-
ity of the torque measurements was about ! 3.6 dyne-cm.

Figure 7 shows the experimental data plotted non-dimensionally
as CD versus R. In the experiments R was varied from 670 to 27,300; the
torque varied from 10 dyne-cm to 7130 dyre-cm (i.e., by an amount ap-
proaching three orders of magnitude). Vver this wide range, the dsta
are very well deucribed by the following simple law:

CD = 3.6 -_1/2 (6)

which appears as the solid line in Figure ,'. Combined with Equation 4,
Lhis leads to the formula for the data:.

D = 3.6 (pM)1/2 a4 W3/2 (7)

Thim compares well with the scanty previous data summarized t.V Equation
4.3 of Reference I (p. 38). As the spheres were filled witn water,
Equation 7 represents the total rarqu. frmi eo-xtrrm! *- li•tprnAl flows.

Equation 6 show, that CD is a function of the Reynolo's vizeber
ouly. This is expe,-ted since the drag here is entirely viscous. T1,-
nonlinear dependence of the torque on w. (D proportional to w. 3 /Z ine4ead

arthur D•.1iz.nr.
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TABLE II

S•UnntRY r :7XPrit!NLAL DAIA

Sphere •j Torque,D, a CD D a 2

No. rad/sec dyne-cm 1/2 3/2 a4 Pg 2 a5 R

1 10.48 471 3.54 0.043, 6.71"16 3

5.24 162 3.44 0.0593 3.36'103

2.096 37.7 3.16 0.0864 1.34-10J
1.048 10.06 2.38 0.0919 6 71,102

2 10.48 2440 3.52 0.0284 1.54'104

5.24 877 3.58 0.0409 7.68-10J
2.096 220 3.55 0.0640 3.08.103
1.048 73.6 3.36 0.0857 1.54,103

3 10.48 7130 3.23 0.0196 2.73"104

5.24 2945 3.78 0.0324 1.37'106

2.096 733 3.72 0.0504 5.46.103
1.048 253.5 3.63 3.0695 2.73"1&0

4 2.096 1746 3.62 0.0392 8.55-103

1.048 675 3.96 0.0606 4.27:103
5.24 6150 3.43 0.0222 2.40'104*
2.096 1680 3.70 0.0379 9.5C.103*

1.048 589 3.67 0.0531 4.78'103*

5 2.096 3650 3.91 0.0334 1.37.104*
1.048 1210 3.67 0.0443 6,a6.10 3*
0.4192 331 3.97 0.0758 2.74.103*
2.096 4020 1 07 0.0367 1.23.104 I
1.048 1393 3.98 0.0508 6.13.103

0.4192 392 4.43 0.089S 2.45.103 I

* For entries with and without asterisk, the water temper&ture was 260C
and 21 0 C, respectivaly. The resulting change in viscasity ca; ad
slightly different values of R for the same values of a and cA.

16
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of t as, ýoi instance, in the case of a rotating cylinder) is, of
course, due to the N stence of a boundary layer whose thickness is
proportional to W_ (see Section IV-C).

Thus, it has been verified that the dependence of iO on the
various parameters of the problem is of the form anticipated from cheo-
retical considerations in Section IV-C. The constant of proportionality
hAs been determined, and it is essentially independent of the Reynold's
number for the wide range of Reynold's numoers considered here (from
670 to 27,300). Considering the fact that both the internal and the
external flows have contributed equally to the torque given oy Equation
7 (see Section IV-E), it : seen that there is a satisfactory agreement
between theory and experiment even in the numerical value of the con-
stant of proportionality (1.9 by theory and 3.6/2 = 1.8 by experiment).
Rut ttis should rather be considered as a coincidence, since in tne
theory the value of this constant depends on what exactly is taken as
the thickness of the boundary layer. In Section IV-C we defined the
thickness of the boundary layer as being equal to the distance from the
disk at which the angular velocity of the tluid decreases to 0.03k W
We can define this thickness at a different velocity decrease (say
0.1iW or 0.0'w), and the value of the constant in Equation 2 will be
different but the form of this equation will be the same. All that the
present theory is expected to give is the correct order of magnitude
for the constant of proportionality.

E. INTERNAL FLOW

As mentioned at the beginning of Section IV-A, the models were
completely filled with water. Therefore, there was an internal as well
as an external flow. The two flows can differ greatly in the following
respect. In the outer fLow, the effects of viscosity continuously dif-
fuse outward so that the fluid is always sheared at the surface. How-
ever, inside the sphere, the effects of viscosity accumulate, and if the
steady sphere rotation persists long enough, then the fluid inside may
rotate with the sphere as a rigid body. When this happens, there is no
shearing at the inner surface of the sphere and, therefore, no torque
acting on it.,

The effects of viscosity diffuse inward to a depth equal to
the radius a in a time t of the order pa 2 /# . It will be at least of
this order of time before rigid body rotation of the internAl fluid Is
possible. For the smallest sphere k.sed in the c¢perimer.cs, T -s of
the order of II minutes. All readings were taken in much shorter times
a&t*., starting the rotation, so we infer that the internal bounlary
layer was relatively thin and the data :ontain contributions "-v ir,-
ternal and external zlows.

IIrhur 0 IIplr.hir
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In order to apply the present results to balloons, which have
diffareat fLuids inside and outside, it is necessary to determine the
relative contributions of internal and external flows to che total
torque. An attempt to perform this separation of effects experimentally
was not successful. The models were first filled with water and rotated
in air; then filled with air and rotated in water. In both cases, there
was too much vertical lead on th: vizczmeter bearing to yield any re-
sults of value. This difficulty could probably be avoided in the future
by using alcohol and water for the two working fluids, and this experi-
ment is uontemplated.

On the other hand, 1:= in the experiment both internal and
external boundary layers were very thin, it seems reasonable to assume
that the internal and external flows contributed the same anount to the
total measured torque. This assumption is supported by the results of
Lamb (Ref. 6), who analyzed theoretically the small amplitude rotational
oscillations of spherical shells vith fluid either inside or outside Ehe
shell. He found that the hydrodynaoic torques from internal and external
flows are identical when the boundary layers are ve.y thin.

2rthur 13Ut.l~Jwr



V. APPARENT AQDIT1ýONAL MOIMNT OF IV.*ERTIA FOR A ROTATING SPHERE

The precedir- section has dea't with the torque arising from
the steady rotation of the zero position. HoweverP an additional reac-
tive torque is associrted with rotationrl accelerations, which is the
subject of this sectici.

When any sol,.d bc!y moves witL coustant velocity '.n an incom-
pressible and inviscid fluid, the net fcrce exerted by the fluid on the
body is equal to zero. On the other hard, when the body moves with a
constant acceleration, the 4itrrounding Luid exerts on the body & net
retarding force which Ls proportional tc 7he acceleration. This affect
has become known an th- "apparent or induced mass" effect, since the
body appears to have mre mass when accclerated in the fluid.

For a smooth sphere accelerating angularly about its axis in
a viscous fluid, a uimnlar type of effect occurs. However, the physical
mechanism causing this effect is now diltcgnt. Here, viscosity demands
a "no-slip" boundary ciindition on the strface of the sphere (or balloon).
Consequently, whenever the balloon &cce!:'ates angularly, some of the
surrounding air and cotrained helium mutt accelerate with the balloon.
Hence, a net retarding torque is *xertee in the balloon by the air and
helium. In addition t:. a damping effect, this torque contains an in-
ertial effect referred to an the "apparec additional moment of inertia"
of the balloon.

For most solid bodies, with thin boundary layers, this increase
in inertia is negligib'e compared to that already in the system by vir-
tue of solid mass. Hoever, fully infla:'d balloons have a very small
moment of inertia (for bodies of their sfze), and the apparent additional
moment of inertia is sganificant. The Uillowing experiment was Intended
tc provide an estimate of the effect.

A. DESCRIPTION OF THE vXPERIPENT

In the experiment, a sphere, imersed in water, was given a
constant initial rotation and then the dicay of the rotation, due to the
viscosity of water, war recorded. From this record, the apparent addi-
tional moment of inert"s of the sphere uits calculated.

A photograph 7f the experimental act-up is shoni in Figure S.
A tank, 3 feet in diaecter, was filled uttb clean tap water to a level
of 2.5 feet. Some of :he sphericsl mode.r, described in Section IV-B,
were threaded on the end of a 12-inch lol.- and L/4-inch dLamete pre-
cision ground otainles• steel shaft. Thb jhaft was placed in a 4-inch
long stainless steel cylindrical bearing •lder having tvo prtctr. f

stainless eteel searings, one at each en.;, This system was suspended

I
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FIGURE 8 APPARATUS FOR THE DI~rERMINATION 0,; T.1:- APP NRENT
I AFOD1TIONi~l- MOMENT OF INERTIA
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vertically along the centerline of the water tank by mounting the bear-
ing holder to a heavy wood framework (see photograph0. The upper bear-
ing was a thrust bearing supporting the net weight of the model and
shaft, while the lower was a simple radial bearing to minimize lateral
motions. From the manufacturer's data, the frictional torque of the
bearing is about 200 cm dynes for a thrust of 200 8m. The level of the
water in the tank was about 5 inches above the top of the model,

The upper end of the shaft protruded upwards from the bearing
holder about 2 inches. There, a thin aluminum circular disk (to be de-
scribed leter) was attached to the shaft in a horizontal position and,
above the disk, a tee-sha-&d driving yoke. Locat6a above the yoke was
a driving mechanism consisting of a laboratory stirrer with variable
speed coupled to a "Zero-Max" speed reducer. The cutput of the driving
mechanism was variable from zero to about three revolutions per second,
On the output of the speed reducer, there was a simple two-pin clutch
which engaged the tee-shaped driving yoke. After the system was brought
up to a preselected speed, the clutch was disengaged and the rotating
mass was free to slow down. The decay of Lae rotation of the spherical
model, due mostly to viscous effects, was recorded by an optical system.

The light source (prefocused beam) and the detector (photo-
duo-diode) of the optical system are mounted opposite to each other in a
C-shaped frame. In the experiment, this frame was placed so that the
aluminum disk interrupted the light path. The disk had small holes,
placed evenly on a circumference, through which the light beam passed as
the dAsk rotated. Thus, a pulsed signal was generated by the detector,
which was amplified and displayed by a time-base event recorder. The re-
sulting data, consisting of a sequence of sharp pulses, gave the angle
of rotation versus time. From these, the angular velocity of rotation
was calculated as a function of time.

Wobble, due to eccentricity, was minimized oy very careful
mounting and by inserting soft rubber in the mounting of the becring
holder to the wood framework. To reduce bearing loads, the models were
filled with water. All experiments were performed in calm water.

The initial speeds 4ere selected so that, fo, .he most part of
the duration of the decay, the Reynold's number was within the range in
which the damping aerodynamic torque was measured in Section IV (700 to
27,000).

B. EXPECTED FORM OF THE APPARENT ADDITIONAL NDMIENT OF INERTIA 4ND
OTH•E THEORETICAL CONSID&RATIONS

Consider the sphere rotating with a consrant anguli ,,tlaocity
w,. It has beer, pointed out in Section IV-C that the flow s, o ce

similar to that of a rotating disk (see Fig. 6). Tak•t'g the tni:kness

S~22

nTlhur • •itdr,1nc

S . ,,.-



of the boundary layer & as given by Equation 1. the total angular mo-
mentum of the fluid in the boundary layer of the sphere is given ap-
proximately by:

)(a2 sn2 a2 41/2
s )( 9)(2 Fr P sin 0 d 9) = 19 (P#)1 Qi ajo

The torque exerted by the fluid on the sphere is the steady torque V
dealt with in the preceding section,

Suppose, now, that the angular velocity of the sphere is
changed by an amount tOu in a time At. The surrounding viscous fluid
will resist this change, and in addition to the steedy torque D, it will
exert on the sphere a torque equal to the time rate of change of its
angular momentum as found above. Therefore, the apparent additional
moment of inertia 1A of the sphere is given avp-oximately by:

I LP 19 (P 1)L/2 C-1/2 a4 4)
A b)s) C&

Actually, this is a quasi-steady state analysis, not always
valid. It has been assumed that the time At, in which the change _A
occurs, is much larger than the time required for a disturbance occur-
ring at the surface of the sphere to diffuse through the boundary layer,
so that the boundary layer remairs just about fully grown during the
change in 4). This latter tine is of order p 8 /,u = l/,w. The condi-
tion for the validity of Lhe aboe analysis is a condition on the magni-
tude of the angular acceleration of the sphere, which can be stated as:

Aw 2
U < < W (9)At

Neglecting bearing friction, the rotation of the sphere muct
satisfy the following differential equation::

dt LI A I~J 2
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where I is the material moment of inertia of the spherical shell. The
factot of 2 appearing in front of IA and 0 accounts for both external
and internal flows, which, it is assumed, contribute equally (see
Section Iv-E). IA will be taken in the form of Equation 8 but with an
unknown constant of proportionality to be determined from the experiment.
D will be taken as found in Section IV. That is::

I A = K ýP 1/2 4 -1/2 (n)IA =Kp/) a w• (l

0 = 1.8 (p* )/2 a4 t3/2 (12)

Let W denote the value oi (i at t = 0. Substituting
Equations 11 and 12 in Equation 10 and introducing the tollowing dimen-
sionless quantities:.

3.6 (Pp) 1/2 a4 Wo,1/2

t (13)

(WO) 1/2 1 (14)K (ppa)1/ 2 a 4

the solution of Equation 10 is:.

p 1/2

= -- + + Cl T (15) 9

Notice thx? the parameter cL is the ratio of Lhi material mo-
ment of inertia of the spherical shell to the apparent additional moment
of inertia due to the external or internal flow at initial conditions,
T is a dimensionless time, The experimental results will be plotted as
Wjo /t)1/2 versus t ,' Then from the family of curves giv':., Ly Equation

15, the cuive that fits the experimental results beat will be telectea.,
This determines the value of Ct from which the unknown cont, tant K can be
computed.

3rthur Z little 3nr
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C. EXPERIMENTAL RESULTS AND DISCUSSION

The results of three experimental runs are tabulated in Table
III. The three models were filled with water.; The results satisfy the
following three conditions, and therefore, the theory developed in the
preceding section is applicable:,

1. The tuLai time ior each run is much less than P a2/)
and, therefore, the assumption, that the hydrodynamic
effects of the internal and external flows are equal,
seems reasonable.:

2. The Reynold's number (p E2 a/I) is within the range
(700 to 27,000) in which the ?amping aerodynamic torque
has been determined,

3. The condition of small angular accelerations, as stated
by Expression 9, is satisfied.

The experimental points are shown in the normalized form

(Oo/O/ /Zversus T] on Figures 9 - 11. Notice that there is an
oscillation due to a slight wobble of the models. Three theoretical
curves (Equation 15) are drawn for each experimental run. In each case,,
the middle curve represents the best value of the parameter dC The
value of C for each run, as well as the corresponding value of .ne un-
known constant K (computed from Equation 14), is shown in Table IV, The
average value of K for the three runs is 22. Therefore, for either ex-
ternal or internal flow:.

IA = 22 (p#)11/2 a4 -•1i/2 (16)

Notice that the theoretical and experimental values of the
constant of proportionality in the formula of IA (Equations 8 and 16)
agree (quite well (see, also, the last paragraph of Section IV-i))•

We believe Lhat there is enough evidence, in the above experi-
mental results, supporting our contention that Equation 16 will give,. at
least, a fair estimate of IA for the internal and external flows under
the above stated three conditions.,

25
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TABLE III

SUMMARY OF EXPERI•NTAL RESULTS

Sphere #2 1 Sphere #3 Sphere #5

|.. 44 - U)t4~ NJ - U . -I

P 41 V) N P(N

0 2ý. 0L t0 1.00 0 H 0A 0o.26 0o

0.50 1.122 0.2111.08 0.13 0.833 0.20 1.10 1.95 0.1826 0.40 1.14

1.34 1.290 0.55 1.25 2.14 0.538 0.59 1.36 4.42 0.1449 0.91 1.28

2.19 1.081 3.91 1.36 5.85 0.346 1.60 1.70 Z.55 0.1146 1.55 1.44

2.69 0.930 1.11 1.47 10.90 0.231 2.99 2.08 11.4010.09521 2.34 1.58

3.37 0.776 1.40 1.61 15.08 0.186 4.14 2.32 16.09 0.0756 3.31 1.77

4.80 0.633 1.99 1.82 19.63 0.148 5.39 2.60 22.08 0.0601 4.54 1.99

6.58 0.509 2.72 1.98 24.a2 0.116 6.67 2.93 27.72 0.0543 5.71 2.09

8.76 0.417 3.632?.19 2.21 ".IOU 7.bl 3.16 33.35 O.U,4, 6.86 2.34

10.69 0.341 4.43 2.42 30.3810.088 8.34 3.37 38.45 0.0357 7.91 2.57

12.30 0.286 5.09 2.65 33.46 0.075 9.19 3.65 44.74 0.0286 9.20 2.88

13.64 0.266 5.65 2./4 37.21 0.060 10.21 4.09 53.54 0.0211 11.01 3.35

14.51 0.253 6.01 2.81 41.29 0.050 11.33 4.46 63.33 0.0183 13.02 3.60

15.12 0.230 6.26 2.95 44.53 0,040 12.22 5.00

15.56 0.227 6.45 2.97, 47.36 0.032 13.00 5.64

16.01 0.217 6.63 3.OJ 49.91 0.026 13.70 6.21

16.36 0.213 6.78 3.07 52.02 0.022 14.28 6.71

16.61 0.18516.88 3.29 54.68 0.01 15.01 ).79

16.93:0.133 7.0' 3.87 I

3rthur a.iuttc 3nRC
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TABLE IV I

EXPERIMENTAL DETERMINATION OF THE CONSTANT K

Sphere No. ExperimentaL Computcd 3
Sphere No.Value of t Vajie o± K

2 4.5 25 1
3 4.0 )I

1.3 20 i

Average Value of K:, 22

3U
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VI. THE AEIIODVNAMIC PAKANETERS OF FULLY INFLATED BALLOONS

It is assumed that a fully inflated bulloon at high altitudes
can be idealized as a spherical shell.

For a balloon, the inside a*n outside gases are different
(helium and air). The ratio of the value of (p , ' for helium to
that for air is equal to about 0.40 and is independent of the altitude
of the balloon. Applying the results of the preceding twc sections, we
obtain.

L = 2.5 (pp)1i2 a4 o3/2 (17)

I A = 31 (P) 1/2 4 -1/2 (18)

where P and # pertain to air and a is the equivalent radius of the
balloon. Equations 17 and 18 are representations of Equations 7 and 16,
respectively, for a helium filled sphere in air.

Equation 17 is valid for a steady rotation which satisfies the
tollowing two conditions:-

l• The Reynold's number (ptoa2 /'M)) must be in the range
700 to 27,000.

2.; The time of the duration of the steady rotation must
be much Less than a 2 //# . (For times much larger than

p :2/p , the contribution of the internal flow is negli-
gible, and 2.5 in Equation 17 should be replaced by 1.6.)

The above .wo expressions are also applicable to an unsteady
rotation which sat.sfies the following additional condition (see
Sectio,1 IV-B)..

3. The ang~lar acceleration must be small, i.e.-,

dw 27t•- < < (1 (19)

Consider a hallcon with a radius of about 80 feet near cLit'Iag
at al altitude of 80 000 feet. At this altitude, the values ot the

3rtur ',tUnr



kinematic viscosity (s/p ) for the atmosphlre and the heiium inqlde
the balloon are about 3.4 x I0-3 and 2.4 x 10-2 ft 2 /sec, respectively.
Therefore, condition 2 states that the duration of a steady rotation
should be much smaller than 70 hours, which is easily satisfied in
practice. Condition 1 requires that the angular velocity should not
exceed 0.9 red/sec, which is also satitcled in practice. As for condi-
tion 3, it is satisfied by the rather smooth oscillations of the
November 1959 Projert Strato-Lab Flight but not by the violent osc..!ia-
tions of earlier (1955 and 193;) balloon flights (see Figs. 2, 3, aind
4 of Ref. 1).

Table V shows th', ýIues of P and IA fusc two values of 4j,
representing roughly the maximum and minimum angular velocity of the
above Strato-Lab Flight at ceiling. The radius of the balloon was about
80 feet. The weight of the balloon fabric, constructed of 2 mil poly-
ethylene, was 1100 lbs. Therefore, the moment of inertia of the material
of the balloon was about 1.5 x 105 slugs ft 2 .

TABLE V

VALUES OF THE AERODYNAMIC EFFECTS FOR A BALLOON OF
80 FEET IN RADIUS AT AN ALTITUDL OF 80,000 FEEt

Apparent Additional
Angular Velocity Damping Aerodynamic Moment of Inertia

W (rad/min) Torque-D (ft lb.) IA (slugs ft 2 )

0.2 0.09 105

0.04 U.008 2.3 x 105

Thus, the apparent additional moment of inertia is comparable
to that of the faurl%. it the range of angular velocitios indicated in
Table V. Considering the large size of the balloon, the total moment
of inertia and the danFinS torque (erodynzc) arc. inda.d, &mail.
Small mom=L.. of inertia makes it easy to set the balloon In rotation,
and small damping results in a very slow decay of the rotation. Hence,
balloons can be vary easily rotated.

•In-a.wy, 1eke to prcscnt a vvty brief revieu of the exist-
ing literature on the aerodynamic parameters of a rotating sphe 3 and
discuss their applicability to balloon rotatLons. Lamb (Ref. . ;,juap
dealt with the p-iblem of a sphere with sinusoidal rotaticn 4% 0 .scous
fluid. Since balloons experience oscillating rotations iraquently, it.
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appeirs, at first, that Lamb's results can be very useful in analyzing
thfse rotations. However, he considered very small Reynolu's numbers,
itt which case the convecdion terms in the momentum equation of the fluid
can be neglected. Thus, he was able to solve in closed form this sim-
plified linear problem (the general problem, with the convection terms
included, is nonlinear). His results for the damping aerodynamic torque
and apparent ,'4ditional moment of inertia depend linearly on the ai'pli-
tude of osc.ilation. Notice that, in Equations 12 and 18, the dependence
of U =nd iA on 0o is nonlinear, which shows that the convection terms
are inLludea in our treatment. The Reynold's numbers involved in balloon
rotations aie h~gh, and Lamb's results are not applicable.

Car-ier and Di Prima (Ref. 7) considered the same problem with
the convection terms. iney formulated twe solution in the form if an
infinite sprips in ascending powers of the amplitude of oscillation, and
they computer4 the first linear term (a special case of Lamb's solution)
and the next ,uidratic term, Their two-terms solution is accurate enough
when the foliowing two conditions are satisfied. The first is a condi-
tion on the frequency of oscillation which can be satisfied only by the
most rapiri balloon oscillations. The second is, naturally, a restriction
on the amplitude of oscillation (it must be small) which is not always
satisfied by balLoons• Carrier and Di Prima's results are so restrirtive
that they can be applied to the rotational oscillations of balloons only
in special circumstances.,

j3
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VII. DYNAMICS OF BALLOON ROTATIONS

Now, that the aerodynamic parameters of the balloon have been
determined, the equations of motion may be written for the coupled ro-
tations of the balloon-gondola system.

Let 61 and 02 denote the angular displacements uf the balloon
ari gondola, respectively. Then the apparent additional moment of in-
ertia (IA) and the damping aerodynamic torque (D) of the balloon are
given by (see Equations 17 and 18):

IA C m lI -1/2 (20)

D I /2 (21)

A "dot" is used to denote the derivative with respect to time. The ver-
tical bars mean "atsolute value of". They are necessary, since IA must
be positive and D raust oppose the motion always. The constants Ot and

are p¢.vn by:-

a = 31 (pp) 1/2 a (22)

S= 2.5 (pf)l / 2 a4  (23)

Let I1 i7d 12 denote the fabric moments of inertia of the
balloon and gcndola, respectively, and k the ef.,ective torsional spring
constant of ,,he suspension system between balloon and gondola. Let T1
and T2 be the torques applied to the balloon and gondola, respectively.
The equationi of motion of the system are:-

C, L 6 a d (14-12 1/2 kI (el-,) (24)

S2 k (92 ) 2 125)

34 1
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Aerodynamic effects on the gondola have been neglected. For specified
applied torques, the angular displacements of the balloon and gondola
can be found from the above equations.

A., SINUSOIDAL ANALYSIS: THEORY

Suppose that sinusoidal torques (tI and T 2 ) of given ampli-
tude, frequency, and relative phase are applied to the sysLeM, Ultl-
mately, the system will reach a periodic steady state. Due to the non-
linearities of the system, the angular displacements (91 and 02) will
have an infinite spectrum of harmonics in addition to the fundamental.
The spectra of 01 and @2 can be computed, but the procedure is much moLe
tedious than that of the reverse problem, that is to say, for given
sinvsoidal 91 and 92, compute the spectra of the required T1 and TF2 .
With regard to the fundamental components, the two problems will give
approximately the same results.

Let 9 1 and 02 be specified as follo's.

9 = 4I Cos Wt (26)

92 = A2 cos 4at + A'2 sin Wt (27)

where Al, A, and A'2 are constants., Then, it can be shown that::

14 116 1 1-2 - (WA,) 1 / 2 (l.11 sin &t . 0.159 sin 3&t ..... ) (28)

1 I4 110 2  
- (A 1)3/2 (0.917 sin &t - 0.102 sin 3&jt ) (29)

Substituting Equations 2b to 29 in Equations 24 and 25, we
find that T 2 has only the fundamental component (Cj) while 'rl has an
infinite r.umber of components (6p, 3ca, 5& ... ). Let the fundamental
components of Tl and T 2 be denote* by,

T i TI cos ut . V'I sin Wt (30)

T2 - 12 cos Wt + T' 2 sin wt

A•rthur I)Llhtde,3nC.
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If

where TI, T'1 , T2 , and T'2 are four unknow~en constants., They are deter-
mnined from the following four equations:

T =(-W2 1 )AI-11 o3/2 A11/2 kA2 (2

VI= -0.91"'7A w 3 /2 A 1 
3/ 2 -_k A' 2 (33)

mI

T2= 2~& 1. 2 -. k) A 2 - k A 1(34)

V2= (2 12 + k) A' 2  (35)

Equations 32 to 35 relate the fundamental components of the
applied torques and angular displacements. Of the seven quantities (A 1 "
A2, A'2, TI, T'1, T2, and VD2 , three must be specified The remaining
four can then be computed. The apparent paradox, that we cannot specify
all the torques (Tl, T'l, T2, and T'2), is resolved when it is noted
that the phase of 01 has already been specified.

As the harmonic components decrease very rapidly (see, for
instance, Equations 28 and 29), a solution, which involves only the
fundamental components, is adequate in this highly nonlinear problem.

The error is about 10 Percent.,

B. 6INUSOIDAL AHALYS1S.- NW6RICAL EX.'.PLE

As a numerical example, we wil! .cnsider the November 1959
Project Strato-Lab Flight at ceiling. Reasonable values for the parom-

eters of the system are as follows.,

at 3.0x3 fr lbs sac 3/
2

4 4.8 x 10 3 ft lbs sec 3/
2

= 1.5 x 105 slugs ft 
2

k - 110 fL lbs

3rthur ZDAtittlrj~nc
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The calculation of d, A and Il has been based on idealizing
the balloon as a spherical shell 80 ft in radius and weighing 1100 lbs.
The value of 12 was obtained by idealizing the gondola as a solid cir-
cular disk 9 ft in diameter and weighing 3500 lbs. It was observed
during the flight that the period of torsiona oscillations of the gon-
dola with respect to the balloon (2 1(1 2 /k)IV2) was about 20 seconds.
Hence, the above value of k is obtained.

Since I,> > 12, the resonant period of the system is very close
to 2#(I 2 /k)l 2. The value of this period is 20 seconds, corresponding
to a frequencv of 0.31 rad/sec., At resonance, a very small torque ap-
plied to tne balloon produces -mall oscillations for the balloon and very
large oscillations for the gondola, while a very small torque applied to

the gondola produces very large oscillations for the entire system,, es-
pecially for the gondola. The flight data (Fig. 3, Ref. i) show that
such a period was not present at ceiiJng. The minimum period was about
10 minutes and the maximum about 40 minutes, corresponding to maximum
and minimum frequenzies of 0.01 and 0.0025 rad/sec< Within this range
of frequencies., we will comoute from Equatione 32 to 35 the angular dis-
placements for given appiiea torques.*

First, consider the case of the torque being applied to the
balloon only, Then the angular displacement of the gondola is approxi-
mately equal to that of the balloon. Both are approximately 180 degrees
out of phase with the applied torque. The amplitude of the angular dis-
placements is shown in Table VI for various values of the amplitude and
frequency of the applied torque.

TABLE VI

AMPLITUDE OF ANGULAR oISPLACEMENT IN RADIANS FOR VARIOUS VALUES
OF AMPLITUDE (T) AND FREQUENCY (w) OF APPLIED TORQUE

TI
SlI 1.7 3 3.4 5.8 10 12 21 39

rad/sec _ ___ __

0.0025 0.5 1 2

0.005 0.5 1 2

0.01 0.5 1
I. ____I_

*Because these equations are nonlinear in A1 , it 3s much easier LO do

this computaLion in reverse; i.e., assume values of the displacement f
the balloon (A1 ) and compute the requi.ec torques and tht dtsplaceec
of the gondola

37,
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We see that, as the frequency increases, highi tzrques are
required in order to have the same displacement. This is so, because
the above frequencies are smaller than the antiresonant frequency of the
system, uhich is equal to about 0.707 times the resonant frequency; i.e.,
0.22 rad/sec.

Next consider th' case of the same torque being applied to the
gondola. Then, the angular displacements of the balloon and gondola are
approximately in phase. They are approximately 180 degrees ou, of phase
with the applied torque. The amplitude of t).e displacement of the bal-

loon is again given by Table VI, but the amplitude of the displacement
of the gondola is now differ;,.. kiable VII). We aee that, as the fre-
qie&Icy increases, the displacement of the gondola becomes smaller than
that of the balloon. this is so, because, in addition to the above dis-
cussed antiresonant frequency of the entire system, in this case the

gondola has anLther antiresonant frequency. Due to the nonlinearities
of the system, the value of this frequency depends on the amplitude of
the appliedltorque. However, it can be shown that it cannot be larger
than (k/Il) = 0.027 rad/sec. Obviously, for the larger frequencies

of Table VII, the gondola is near this antiresonance.

TABLE VII

AMPLITUDE OF ANGULAR DISPLACEHENT IN RADIANS FOR VARIOUS VALUES
OF AMPLITUDE (T) AND FREQUENCY (0) OF APPLIED TORQUE

ftl 1 1.7 3 3.4 5.8 10 12 21 39

Erad/sec • - - -ft

0.0025 0.S 1 2 1

0.005 1 0.5 0.9 1.9 I

0.01 0.4 0.8 1.6

-LI L .I I I.6

The above angular displacements are of the same order as those

shown by the flight data. We see that the required torques nro rather
small. It seems that they can arise easily from aerodynamic effects
(the wake behind the slowly rising or falling balloon, etc.), The smaller
of these torques could, also, be Laused by the motion of matter in the
gondola (telescope, operator, navigator, etc.).

For the AboVy frequencies and amplitudes of the spplie :cques,
the aerodynamic damping on the balloon is very small, but the apparent
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additional moment of inertia of the balloon is comparable to its material
moment of inertia.

The criteria for iwproving the stability of the gondola dependon the place of application of the torque. In general, the moment ofinertia of the gondola will be, at mosL, of the same order as the moment
of inertia of the balloon. Then, when the torque is applied to the bal-
loon, the stability of the gondola is improved as k/I 2 -* 0. On the other
hand, when the torque is applied to the gondola, the stability of the
gondola is improved as k/I 1 4 00. In other woids, for torques applied tothe balloois, the gondola mumi be decoupled from it, -hile, for torques
applied to the gondola, the gondola must be well coupled to the bailoon,
These two criteria cannot be satisfied simultaneously. A compromise must
be made, which will depend on the nature of the torques applied to theballoon and gondola. Considerable damping will, also, improve the sta-
bility of the system, but as pointed out already, the damping in balloons
(aerodynamic) is very small.

39
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